National Guidelines for Analysis of Cerebrospinal Fluid for Bilirubin in Suspected Subarachnoid Haemorrhage

Produced by a working group of UK NEQAS for Immunochemistry.

Corresponding Author:-
Dr Robert Beetham
Dept of Clinical Biochemistry
Frenchay Hospital
Bristol BS16 1LE
e-mail robert.beetham@north-brisol.swest.nhs.uk
Abstract

It is crucially important to detect subarachnoid haemorrhage (SAH) in all patients in whom it has occurred to select patients for angiography and preventative surgery. A computed tomography (CT) scan is positive in up to 98% of patients with SAH presenting within 1 day but is positive in only 50% presenting within 1 week.

Cerebrospinal fluid (CSF) bilirubin spectrophotometry can be used to determine the need for angiography in those few CT-negative patients in whom clinical suspicion of a SAH remains high; it may remain positive for up to 2 weeks after the event. The lumbar puncture (LP) should only be performed >12h after the onset of presenting symptoms. Whenever possible, collect four sequential CSF specimens. Always ensure that the last CSF sample taken is sent for bilirubin analysis. Protect the CSF from light and avoid vacuum tube transport systems if possible.

Always use spectrophotometry in preference to visual inspection All CSF specimens are precious and should be analysed no matter how they were transported, where necessary with appropriate caveats regarding oxyhaemoglobin. Centrifuge the specimen at >2000rpm for 5 min as soon after receipt in the laboratory and in any case within 1h of collection. Store the supernatant at 4 degrees centigrade in the dark until analysis.

An increase in CSF bilirubin is the key finding which supports the occurrence of SAH, but is not specific for this. In most positive cases bilirubin will occur with oxyhaemoglobin. Oxyhaemoglobin occurring on its own is difficult to interpret and may be increased as a result of in vitro haemolysis of red cells introduced during lumbar puncture. This process is exacerbated by vacuum tube transport systems. Results should be interpreted in the light of other investigations (e.g. if scan shows bilirubin, then measure serum bilirubin and CSF oxyhaemoglobin and protein) and other confounding variables such as the time elapsed from presentation to LP.
Introduction

Subarachnoid haemorrhage (SAH) is spontaneous arterial bleeding into the subarachnoid space, usually from a cerebral aneurysm (1). Patients who have bled, and in whom the diagnosis is initially missed, often present with a further bleed, in a poorer condition and with a worse outcome than in those in whom the correct diagnosis is made promptly (2, 3). It is thus crucially important to detect SAH in all patients in whom it has occurred.

The initial investigation, the demonstration of blood on a CT scan will, in experienced hands, be positive in 98% of patients with SAH presenting within the first 12 h after an event (4), positivity falling with time to about 50% in patients presenting after 1 week (5). Patients with a positive CT usually proceed to catheter angiography to confirm the presence of an aneurysm and locate its site so that it can be treated to prevent a re-bleed. Catheter angiography, a resource-intensive and invasive procedure, carries a small but definite risk of morbidity and mortality (6). There is thus a need for a procedure for detecting those CT-negative patients presenting with a history suggestive of SAH who actually have sustained a SAH (4), and to eliminate the diagnosis in the remainder without the need for catheter angiography. Best estimates are that a UK hospital may see up to 150 patients per annum with symptoms of SAH who are CT-negative; some 2-3% of these will be proven to have a ruptured aneurysm (4).

Following haemorrhage into the CSF, red blood cells undergo lysis and phagocytosis; the liberated oxyhaemoglobin is converted in-vivo in a time-dependent manner into bilirubin (7), and sometimes methaemoglobin (8). Of these three pigments, only bilirubin arises solely from in-vivo conversion. Oxyhaemoglobin and methaemoglobin may both be produced in-vitro as well as in-vivo (9).

Bilirubin may be detected in CSF by spectrophotometry or by visual inspection for the yellow discoloration (xanthochromia) it imparts to CSF. Evidence clearly indicates that visual inspection is not a reliable method (10, 11). Spectrophotometry to detect bilirubin is of particular value in the investigation of a CSF with an increased erythrocyte count as there is no other reliable way for distinguishing between SAH and a traumatic lumbar puncture. It is also of value in the investigation of CSF with a normal red cell count from a patient presenting several days after an event by which time the cells may no longer be present. We now propose guidelines for the specimen requirements, transport, handling, analysis of CSF and interpretation in patients with a suspected SAH but a negative CT scan. Notes to these guidelines provide the reasoning behind our recommendations.
Specimen requirements and transport

A protocol for specimen requirements and transport is provided in Appendix 1 although modification may be required to meet local needs. Essentially, the requirements are:

- Whenever possible collect four sequential specimens.
- The specimen for spectrophotometry should always be the last fraction of CSF to be taken, and ideally at least the fourth (Note a).
- The volume requested must be that which enables the analysis to be undertaken without dilution (Note b), and will be determined by local requirements.
- The specimen should be protected from light (Note c).
- Use of pneumatic tube systems to transport the specimen to the laboratory should be avoided (12) (Note a).
- A simultaneous blood specimen should be taken for serum bilirubin and total protein measurement.
- Record the timing of sampling relative to that of possible haemorrhage. This should be no less than 12h (Note d).

It is advised that prospective protocols are discussed with users of the service.

Specimen handling

The specimen designated for spectrophotometry should be centrifuged at >2000 rpm for 5 min as soon as possible after receipt in the laboratory and in any case within 1h of collection. The supernatant should be stored in the dark at 4°C until analysis (Note c).

Analysis

- Perform a zero-order spectrophotometric scan on the supernatant between 350 and 600 nm using a recording spectrophotometer and a cuvette with a 1 cm path length. Use an initial full-scale deflection (FSD) of 0.1 absorbance units (AU). If any peaks exceed 0.1 AU, scale as appropriate but never use a FSD < 0.1 AU (Note e).
- The specimen should not be diluted.

Inspect the scan and identify and record the presence of the following haem pigments:

- **Oxyhaemoglobin:** absorbance maximum between 410 and 418 nm.
- **Bilirubin:** either a broad peak in the range 450 to 460 nm or a shoulder adjacent to an oxyhaemoglobin peak if present.
• **Methaemoglobin**: the rarest pigment and if present usually manifest as a broader peak than oxyhaemoglobin occurring between 403 and 410 nm.

Calculate the net bilirubin absorbance (NBA) according to Chalmers’ modification (13) to the original method of Chalmers and Kiley (14) as follows (Note f):

- Draw a predicted baseline which forms a tangent to the scan between 350-400 nm and again between 430-530 nm. This baseline should never cut the scan.
- Measure the absorbance of the scan above this predicted baseline at 476 nm; this is the net bilirubin absorbance (NBA). If the baseline forms a tangent to the scan before 476 nm, then the measured NBA is by definition zero.
- Also measure the absorbance of any oxyhaemoglobin peak above this predicted baseline; this is the net oxyhaemoglobin absorbance (NOA).

Illustrative zero-order spectra are shown in Figures 1a-e.

Reporting and Interpretation

The following is the most appropriate advice that we can provide regarding reporting and suggested interpretative comments. For each case the final interpretation should take into account the known dynamic production of haem pigments following a bleed as outlined in the Introduction. Thus most positive cases exhibit both oxyhaemoglobin and bilirubin. Oxyhaemoglobin occurring on its own may, unusually, be found early on after a bleed (particularly if the absorbance of the oxyhaemoglobin peak is sufficiently great to obscure a small but significant amount of bilirubin – see below). Bilirubin occurring on its own would not be expected within the first few days, but becomes an increasingly possible finding as the second week progresses.

1. **NBA ≤ 0.007 AU and no oxyhaemoglobin present**

 Report as: “No significant bilirubin and no oxyhaemoglobin present. No evidence to support subarachnoid haemorrhage.” (Note g).

2. **NBA ≤ 0.007 AU and oxyhaemoglobin present but NOA less than 0.1 AU**

 Report as: “Oxyhaemoglobin present but no significant bilirubin. Oxyhaemoglobin on its own has a low predictive value for subarachnoid haemorrhage but does not exclude.” (Note h).

3. **NBA ≤ 0.007 AU and NOA ≥ 0.1 AU**

 Report as: “Oxyhaemoglobin present but no significant bilirubin. NB. The concentration of oxyhaemoglobin may mask a small but significant increase in bilirubin. Subarachnoid haemorrhage not excluded.”(Note i).
4. **NBA > 0.007 AU and no oxyhaemoglobin present**

 (i) Serum bilirubin $\leq 20 \text{ µmol/L}$ and CSF protein $\leq 1.0 \text{ g/L}$.

 Report as: “Increased CSF bilirubin but no oxyhaemoglobin. Consistent with subarachnoid haemorrhage.” (NB This would be an unusual pattern within the first week after an event.) (Note j)

 (ii) Serum bilirubin $> 20 \text{ µmol/L}$ and CSF protein $\leq 1.0 \text{ g/L}$.

 Apply formula to calculate an adjusted NBA (Appendix 2).

 If adjusted NBA $\geq 0.007 \text{ AU}$

 then report as: “Increased CSF bilirubin but no oxyhaemoglobin. Consistent with subarachnoid haemorrhage.” (NB This would be an unusual pattern within the first week after an event).

 If adjusted NBA $< 0.007 \text{ AU}$

 then report as: “Increased CSF bilirubin but probably totally accounted for by increase in serum bilirubin. No oxyhaemoglobin. Not supportive of subarachnoid haemorrhage.”

 (iii) CSF protein $> 1.0 \text{ g/L}$, whatever the serum bilirubin.

 Report as: “Increased CSF bilirubin, but no oxyhaemoglobin. This finding may be consistent with: subarachnoid haemorrhage; an increased bilirubin accompanying the increased CSF protein; or other source of CSF blood. Interpret result with caution in relation to subarachnoid haemorrhage especially if within first week of event.”

5. **NBA > 0.007 AU and oxyhaemoglobin present but NOA $\leq 0.1 \text{ AU}$**

 (i) Serum bilirubin $\leq 20 \text{ µmol/L}$ and CSF protein $\leq 1.0 \text{ g/L}$.

 Report as: “Increased CSF bilirubin with oxyhaemoglobin present. Consistent with subarachnoid haemorrhage.”

 (ii) Serum bilirubin $> 20 \text{ µmol/L}$ and CSF protein $\leq 1.0 \text{ g/L}$.

 Apply formula (Appendix 2) to calculate adjusted NBA.

 If adjusted NBA $\geq 0.007 \text{ AU}$

 then report as: “Increased CSF bilirubin with oxyhaemoglobin present. Consistent with subarachnoid haemorrhage.”

 If adjusted NBA $< 0.007 \text{ AU}$
then report as: “Increased CSF bilirubin but probably totally accounted for by an increased serum bilirubin. Oxyhaemoglobolin present which on its own has a low predictive value for subarachnoid haemorrhage although does not totally exclude.”

(iii) CSF protein > 1.0 g/L, whatever the serum bilirubin.

Report as: “Increased CSF bilirubin with oxyhaemoglobin present. This finding may be consistent with: subarachnoid haemorrhage; an increased bilirubin accompanying the increased CSF protein; or other source of CSF blood.”

6. NBA > 0.007 and NOA > 0.1 AU.

(i) CSF protein ≤ 1.0 g/L whatever the serum bilirubin.

Report as: “Increased CSF bilirubin with oxyhaemoglobin present. Consistent with subarachnoid haemorrhage.”

(ii) CSF protein > 1.0 g/L whatever the serum bilirubin.

Report as: “Increased CSF bilirubin with oxyhaemoglobin present. This finding may be consistent with: subarachnoid haemorrhage; an increased bilirubin accompanying the increased CSF protein; or other source of CSF blood.”

7. Methaemoglobin detected

This is an unusual finding and probably related to artefactual conversion of oxyhaemoglobin (Note k). Therefore, when methaemoglobin is present the significance of the finding is the same as if oxyhaemoglobin had been detected. Report as under 2, 3, 5 and 6, substituting methaemoglobin for oxyhaemoglobin.

NB. When reporting on spectrophotometry, bear in mind (i) That a normal erythrocyte count in a CSF taken definitely between 12 and 72h after an event is evidence against a SAH; and (ii) That spectrophotometric findings on a CSF taken at a second or subsequent lumbar puncture some hours or more after the previous puncture only reflect the probability that blood has been introduced traumatically into the subarachnoid space at an earlier puncture.

Decision tree

A decision tree (Figure 2) outlines the steps involved in producing the key laboratory information for the detection of an intra-cranial bleed.
Standards based on these guidelines

1. The laboratory should provide instructions for users which provide details of requesting, specimen requirements, transport and interpretation (see example in Appendix 1).

2. There should be in place SOPs for specimen handling, analysis, reporting and interpretation.

3. The laboratory must participate in an appropriate external quality assurance scheme.

4. It is unlikely that a laboratory will build up sufficient expertise unless a minimum of 25 specimens are analysed annually.

5. The nature of the analytical service which a laboratory provides, e.g. whether it is available only within certain hours or at all times, will be dependent upon local needs. In particular these will be determined by the Tertiary centre’s referral policy, access to its beds and availability of angiography. Both the analytical and interpretative aspects of the service should be provided together.

6. To meet the requirements of Clinical Governance all spectrophotometric scans should be kept in an appropriate form for recall for a minimum 2 years.

7. Spectrophotometers should be serviced regularly and undergo regular absorption and wavelength checks.

Acknowledgements

The working group acknowledge with thanks the assistance of D O’Connell, H Gunawardena and P L M Lynch in the provision of data which has been used by the group and to D O’Connell for Figure 1. It also acknowledges the formulation of guidelines by other groups particularly the All Wales Audit Group and the Northern Ireland Audit Group.
References

Notes to the Guidelines

(a) In addition to the oxyhaemoglobin which appears after a SAH, it also commonly arises either from the \textit{in-vitro} lysis of red cells in the CSF obtained following puncture, or from the trauma of the puncture itself. As explained in note (g) below, such oxyhaemoglobin may interfere with the detection of bilirubin and is a confounding element in interpretation. Therefore every \textbf{effort should be made to eliminate it}. It is for this reason that CSF taken for spectrophotometry should be collected into a separate container to those in which the first few mL of fluid are placed, and why transport by pneumatic tube is not recommended.

(b) As explained in note (j) even small increases above the reference range are sufficient to be consistent with a SAH and therefore indicate the need for angiography. Dilution of the specimen will decrease the certainty with which such increases may be detected.

(c) Stability studies have shown that CSF stored in a plastic tube and exposed to spring daylight through a north-facing window showed a bilirubin decay rate of at least 0.005 AU/h. CSF specimens must therefore be protected from light to avoid this phenomenon which may lead to false negative results.

(d) Current consensus is that CSF should not be examined for bilirubin earlier than 12h after an event. This is based on two strands of evidence.

1. That bilirubin forms 9-15h after a bleed (7). We have been unable to review the evidence on which this statement has been made.

2. That in a series of 111 patients positive for blood on CT, all subject to LP after 12h, xanthochromia was present in all(19). This evidence must be reviewed with caution due to the ambiguous definition of xanthochromia.

It is also commonly believed that xanthochromia will be evident in all patients up to 2 weeks following a bleed. Again this is based on an inappropriate group, those who were positive for blood on CT(19). In patients who are negative for blood on CT who may be negative due to late presentation or small bleeds we cannot be certain about this period of 2 weeks. In our experience we have detected an increased CSF bilirubin in 2 patients subsequently shown to have ruptured aneurysms where the CSF was taken at 11 and 14 days after the onset of symptoms.

(e) Derivative spectroscopy has been found to be of value by some analysts, but requires considerable experience in interpretation. It is therefore not recommended.

(f) We have confirmed that, on 58 CSF specimens with bilirubin NBA 0.003 – 0.251 (24 of which contained oxyhaemoglobin in addition to bilirubin) there was no significant difference between the NBA obtained by the original Chalmers and Kiley method (14) and that by the modification of Chalmers (13).
(g) Out of 740 spectrophotometric scans reviewed from CT-ve patients in four participating centres, 425 had no oxyhaemoglobin and NBA ≤ 0.007. Angiograms were performed in 31 of these 425 patients and no aneurysms were found.

(h) From the same series, 204 CSFs were reported as containing oxyhaemoglobin with NBA ≤0.007. 29 of these patients had angiography, and in only two instances was an aneurysm found. Oxyhaemoglobin thus has a low predictive value for SAH. However, we recognise that rarely, early on after a bleed, oxyhaemoglobin may be present without bilirubin.

(i) Experiments using a combination of increasing bilirubin and oxyhaemoglobin concentrations have indicated that oxyhaemoglobin causes an underestimation of NBA by approximately 0.001AU for every 0.030 NOA. To prevent undue complexity, we incorporate this into interpretation for NOA >0.1AU.

(j) Originally Chalmers and Kiley (14) indicated a reference range for NBA of 0 to 0.007; values 0.010 – 0.015 were classed as equivocal and values > 0.015 as positive. In the series quoted above, CSFs from three patients with proven ruptured aneurysms have yielded NBA of 0.008, 0.015, 0.016. In addition we are aware of 3 CT+ve patients with proven aneurysms where the CSFs have yielded NBA of 0.008, 0.012, 0.019. We therefore recommend that values of a NBA > 0.007 are a clear indication for angiography. In the series quoted above, 27 patients with NBA > 0.007 proceeded to angiography of which 12 were found to have aneurysms.

(k) While there is documented evidence for the production of methaemoglobin following SAH, it was such an uncommon finding in the series quoted (in four patients, one of whom was angiography positive) that no clear indication of its significance could be obtained. Very recent work, which needs to be confirmed, has implicated high levels of iodine (widely used as a skin disinfectant) as being involved in in-vitro methaemoglobin formation.
Appendix 1

Exemplar protocol for the collection, handling and transport to the laboratory of
CSF requiring spectrophotometric scanning for the detection of bilirubin

Principle

This test is performed to try to identify those patients who have had a subarachnoid
haemorrhage (SAH) but in whom the CT scan is negative. The spectrophotometric
scan detects bilirubin in CSF and this finding is consistent with a bleed into the CSF.

The formation of bilirubin after haemorrhage is a time-dependent process and
bilirubin may not be detectable soon after the event (e.g. onset of severe headache).
On current evidence it is recommended that CSF is not sampled until at least 12h after
a suspected event. The opening pressure should always be recorded when performing
a lumbar puncture. Lumbar puncture is contraindicated in patients with papilloedema,
focal neurological deficit or reduced consciousness.

Please indicate on the request form:

- Clinical indication for request
- Result of CT scan
- Time of onset of symptoms/event
- Time of lumbar puncture
- If the differential diagnosis includes meningitis

Specimens

- CSF may also be required for microbiological examination and for protein and
glucose estimation. **Sufficient CSF will therefore be needed for all of these
required investigations.**

- Label **three** 28mL sterile universal containers and **one yellow-top fluoride
EDTA tube** each with the patient’s name, hospital number, ward, date of birth,
time that the CSF was obtained and the sequence order of sampling.

- The first specimen should be a **minimum of 0.5mL** of CSF placed in a **yellow-
top fluoride EDTA tube** for glucose and protein estimations. This specimen
should be sent to **Clinical Biochemistry**.

- **Microbiology** requires **at least 5mL** of CSF divided into 2 sequentially
numbered sterile 28mL universal containers labeled “second” and “third”.
These 2 specimens must be delivered to the **Microbiology** Department as soon
as possible. Use of the pneumatic tube delivery system should be avoided.

- A further **minimum of 1mL** of CSF should be placed in the final (labeled
“fourth”) sterile 28mL universal container for the spectrophotometric scan.
(NB **1mL** is about 20 drops from the Luer connector on a needle). **Protect this
sample from the light** by placing it in a thick brown envelope outside the
usual plastic specimen bag.
A **blood specimen** should be taken at the same time for serum bilirubin, total protein and glucose estimation that are needed to aid interpretation.

These samples must also be delivered to the Clinical Biochemistry Department as soon as possible. Use of the pneumatic tube delivery system should be avoided.

If this procedure is not followed analysis is likely to be compromised.

Text in italics indicates those details subject to local requirements.
Appendix 2

Adjustment of NBA for an increase in serum bilirubin

The predicted absorbance (PA) of a CSF at 476 nm due to bilirubin can be calculated according to the equation (15,16,17).

\[
PA = \frac{\text{CSF total protein (g/L)}}{\text{Serum total protein (g/L)}} \times \text{serum bilirubin } \mu\text{mol/L} \times 0.042 \text{ AU}
\]
(Equation 1)

Then adjusted NBA = measured NBA – predicted absorbance (PA)
(Equation 2)

We recommend use of this formula because it has been validated for use:

(i) In neonatal jaundice (18) albeit often at higher bilirubins than are encountered in adults;

(ii) In a group of 12 patients with increased serum bilirubin and CSF protein up to 1.0 g/L where predicted – actual NBA produced a mean value of – 0.002 AU.

We do not recommend it for use where the CSF bilirubin is increased due to an increased CSF protein alone, or where there is an increased serum bilirubin and the CSF protein is greater than 1.0 g/L, because of lack of validation.
Legends to figures

Figures 1a-e. Representative spectrophotometric scans showing NBA at 476 nm above a tangential baseline as described in the text. 1a. A normal CSF with essentially no bilirubin; scan and baseline (not drawn) are superimposable. 1b. NBA within the reference range. 1c. Oxyhaemoglobin with zero NBA. 1d. Oxyhaemoglobin with NBA within the reference range. 1e. Oxyhaemoglobin with an increased NBA.

In practice such scans are best visualised filling the whole of an A4 page in landscape mode.

Figure 2. Bilirubin absorbance in CSF for detection of intra-cranial bleed
Figure 2 Bilirubin absorbance in CSF for detection of intra-cranial bleed

- **CT**
 - Lumbar puncture if safe to do so at >12 hr post event

- **Specimens 2, 3**
 - Specimen 1 Fluoride oxalate (or EDTA)

- **Specimen 4**
 - Serum sample

- **Clinical Biochemistry**
 - Total Protein
 - Glucose
 - Spectro-photometry
 - Serum bilirubin

- **Microbiology**
 - +ve blood
 - -ve blood/equivocal

- **Angiography**
 - Oxyhaemoglobin NOA

- **Oxyhaemoglobin NOA**
 - NBA ≤ 0.007
 - NOA < 0.1
 - NO
 - NOA may mask low NBA: INCONCLUSIVE
 - NBA > 0.007
 - YES
 -predicted contribution to CSF bilirubin absorbance

- **Chalmers calculation NBA**
 - NBA > 0.007
 - CSF Total Protein ≤ 1.0g/L
 - YES
 - POSITIVE
 - Angiography
 - CAUTION: Could be intra-cranial bleed or increased CSF protein causing a raised bilirubin
 - NO
 - NEGATIVE

Abbreviations:
- NBA = Net Bilirubin Absorbance
- NOA = Net oxyhaemoglobin Absorbance

Note: Calculate serum bilirubin (if ≥ 20 umol/L) contribution to CSF (predicted absorbance).